Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract Ecological zonation in coastal forests is driven by sea level rise and storm‐surge events. Mature trees that can survive moderately saline conditions show signs of stress when soil salinity increases above its tolerance levels. As leaf burn, foliar damage, and defoliation reduce tree canopy cover, light gaps form within the crown. At the forest‐marsh edge, canopy cover loss is most severe; trunks of dead trees without canopies form “ghost forests.” Canopy thinning and light from the edge alter conditions for understory vegetation, promoting the growth of shrubs and facilitating establishment and spread of invasive species that were previously limited by light competition. In this research, we present an analysis of illuminance and temperature in a coastal forest transitioning to a salt marsh. Light sensors above the ground surface were used to measure light attenuation of trees and understory vegetation and to observe the effect of reduced canopies at the forest‐marsh edge. Farther from the marsh, where salinity is lower and trees are healthy, dense canopies attenuate light. We estimate that during the growing season, tree canopies intercept 50% of illuminance on average. Closer to the marsh, canopy thinning, and tree death allow greater light penetration from above, as well as from the adjacent marsh. These illuminance values are further increased by light penetration from the forest‐marsh edge (edge effect). Here, higher illuminance may permitPhragmites australisexpansion. At intermediate locations, trees intercept between 32% and 49% of light and the understory shrubMorella ceriferaintercepts a further 45% of penetrating light based on comparisons of illuminance above and below shrub canopies. Light penetration from the edge can also be felt. The presence ofM. ceriferareduces the air temperature close to the soil surface, creating a cooler summer microclimate. The tree health state is reflected in the canopy size. The canopy patterns and the edge effect are responsible for light availability distribution along forest‐marsh gradients, consequently affecting the understory vegetation biomass. We conclude that during forest retreat driven by sea level rise, tree dieback increases light availability favoring the temporary encroachment ofPh. australisandM. ceriferain the understory.more » « less
-
The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologic, geomorphic, biotic, and anthropogenic mechanisms involved. We review several negative feedbacks that help stabilize ecosystems in the early stages of salinity stress (e.g., reduced water use and resource competition in surviving trees, soil accretion, and farmland management). However, processes that reduce salinity are often accompanied by increases in hypoxia and other changes that may amplify saltwater intrusion and vegetation shifts after a threshold is exceeded (e.g., subsidence following tree root mortality). This conceptual framework helps explain observed rates of vegetation change that are less than predicted for a static landscape while recognizing the inevitability of large-scale change.more » « less
-
Abstract Sea level rise and storm surges drive coastal forest retreat and salt marsh expansion. Both salinization and flooding control ecological zonation and ecosystem transition in coastal areas. Hydrological variables, if coupled with ecological surveys, can explain the different stages of coastal forest retreat and marsh encroachment. In this research, long‐term data of a host of hydrological variables collected along transects from marsh to inner forest were analyzed. Linear discriminant analysis (LDA) was used to identify the primary hydrological variables responsible for the forest‐marsh gradient and their seasonal patterns. Water content (WC) in the soil (WC) and groundwater electrical conductivity (EC) were found to be the main variables responsible for the hydrological differences among the sites. Higher values of WC and EC were found in the low‐forest area near the salt marsh, with hydrological differences between forest levels reflected in ecological community structure. In particular, some sites were characterized by high EC while others by high WC values, suggesting significant spatial variations within hundreds of meters. The forested area, relatively flat in elevation, was characterized by limited hydraulic gradients and consequently lateral discharges. These characteristics made the role of groundwater level negligible in driving the hydrological clustering. Seasonal LDA data suggest that the sites are hydrologically different during winter (higher distance among clusters of variables) and similar during summer (low distance among clusters). In the study area, higher rainfall occurs during summer, decreasing groundwater EC in areas characterized by low canopy cover (dying forest). Rainfall moved low forest sites closer to the pristine high forest in the LDA analysis. During storm surge events, the distance between clusters decreased, indicating uniform salinization and flooding across the forest. Therefore, we conclude that ecological zonation in a coastal forest is reflected in seasonal hydrological differences in the absence of storm surges. Storm surges do not produce contrasting hydrological conditions and might not be responsible for ecological differences in the short‐term. On the contrary, differences in hydrological recovery are responsible for forest zonation. An additional analysis carried out using a binary Marsh‐Healthy forest LDA classifier indicates when each site switches from a forest hydrological state to a salt‐marsh hydrological state. Our results are useful for long‐term predictions of the ecological evolution of the forest–salt marsh ecotone.more » « less
-
Abstract Rising sea levels lead to the migration of salt marshes into coastal forests, thereby shifting both ecosystem composition and function. In this study, we investigate leaf litter decomposition, a critical component of forest carbon cycling, across the marsh-forest boundary with a focus on the potential influence of environmental gradients (i.e., temperature, light, moisture, salinity, and oxygen) on decomposition rates. To examine litter decomposition across these potentially competing co-occurring environmental gradients, we deployed litterbags within distinct forest health communities along the marsh-forest continuum and monitored decomposition rates over 6 months. Our results revealed that while the burial depth of litter enhanced decomposition within any individual forest zone by approximately 60% (decay rate = 0.272 ± 0.029 yr−1(surface), 0.450 ± 0.039 yr−1(buried)), we observed limited changes in decomposition rates across the marsh-forest boundary with only slightly enhanced decomposition in mid-forest soils that are being newly impacted by saltwater intrusion and shrub encroachment. The absence of linear changes in decomposition rates indicates non-linear interactions between the observed environmental gradients that maintain a consistent net rate of decomposition across the marsh-forest boundary. However, despite similar decomposition rates across the boundary, the accumulated soil litter layer disappears because leaf litter influx decreases from the absence of mature trees. Our finding that environmental gradients counteract expected decomposition trends could inform carbon-climate model projections and may be indicative of decomposition dynamics present in other transitioning ecosystem boundaries.more » « less
-
Saltwater intrusion on coastal farmlands can render productive land unsuitable for agricultural activities. While the visible extent of salt-impacted land provides a useful saltwater intrusion proxy, it is challenging to identify in early stages. Moreover, associated ecological and economic impacts are often underestimated as reduced crop yields in farmlands surrounding salt patches are difficult to quantify. Here we develop a high-resolution (1 m) dataset showing salt patches on farm fringes and quantify the extent of salt-impacted lands across the Delmarva Peninsula, United States. Our method is transferable to other regions across and beyond the mid-Atlantic with similar saltwater intrusion issues, such as Georgia and the Carolinas. Our results show that between 2011 and 2017, visible salt patches almost doubled and 8,096 ha of farmlands converted to marsh—another saltwater intrusion consequence. Field-based electrical conductivity measurements show elevated salinity values hundreds of metres from visible salt patches, indicating the broader extent of at-risk farmlands. More farmland areas were within 200 m of a visible salt patch in 2017 compared to 2011, a rise ranging between 68% in Delaware and 93% in Maryland. On the basis of assumed 100% profit loss in at-risk farmlands within a 200 m buffer around salt patches in 2016–2017, the range of economic losses was estimated between US$39.4 million and US$107.5 million annually, under 100% soy or corn counterfactuals, respectively.more » « less
-
Expansion of shrubs has been observed in a number of biomes and in response to diverse global change drivers. Noting shrub expansion in coastal forests affected by sea level rise, we began to monitor shrub populations in a transgressing loblolly pine forest in coastal Virginia. Forest study plots spanned a gradient of salinity and progression toward a ghost forest state, from high forest with a relatively closed canopy, to mid and low forest, where there were few remaining live canopy trees. Shrubs of the species Morella cerifera were censused for 3 years from 2019 to 2021. Shrub distributions were compared to distributions of the invasive grass Phragmites australis to test if competition with this invasive species played a role in the observed shrub distribution. Shrubs were most abundant in the mid forest, whereas P. australis was most abundant in the low forest, but we did not detect a negative correlation between changes in occupancy of P. australis and shrubs. Rapid growth of shrubs in the mid and high forest radically changed the forest understory structure during the study period. Basal area of shrubs in the mid and high forest tripled, and shrub occupancy increased from 45 to 66% in the high forest, with high patchiness between plots. A flooding event salinized the site in late 2019, during the study. Following the flood, soil porewater salinities in the low forest remained above levels known to cause mortality in M. cerifera for several months. We postulate that high salinity, rather than competition with P. australis , filters M. cerifera from the low forest, whereas moderate salinity in the mid and high forest favors M. cerifera growth and expansion. The increase in shrubs appears to be a hallmark of salt-affected maritime forest, with the shrub front occurring in advance of other indicators of transgression such as P. australis invasion.more » « less
-
Coastal landscapes are naturally shifting mosaics of distinct ecosystems that are rapidly migratingwith sealevel rise. Previous work illustrates that transitions among individual ecosystems have disproportionate impacts on the global carbon cycle, but this cannot address nonlinear interactions between multiple ecosystems that potentially cascade across the coastal landscape. Here, we synthesize carbon stocks, accumulation rates, and regional land cover data over 36 years (1984 and 2020) for a variety of ecosystems across a large portion of the rapidly transgressing mid-Atlantic coast. The coastal landscape of the Virginia Eastern Shore consists of temperate forest, salt marsh, seagrass beds, barrier islands, and coastal lagoons. We found that rapid losses and gains within individual ecosystems largely offset each other, which resulted in relatively stable areas for the different ecosystems, and a 4% (196.9 Gg C) reduction in regional carbon storage. However, new metrics of carbon replacement times indicated that it would take only 7 years of carbon accumulation in surviving ecosystems to compensate this loss. Our findings reveal unique compensatory mechanisms at the scale of entire landscapes that quickly absorb losses and facilitate increased regional carbon storage in the face of historical and contemporary sea-level rise. However, the strength of these compensatory mechanisms may diminish as climate change exacerbates the magnitude of carbon losses.more » « less
An official website of the United States government
